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Abstract. First, the author contributed with some aspects concerning the chronology of the 

developments of the Marciniak model. A review of the recent developments in the last 

decade of Marciniak-Kuczynski model is presented in the paper. Implementation of the new 

constitutive and polycrystalline models, enhancing the existing models to take into account 

new material, process parameters and strain-paths, modeling the Forming Limit Band 

concept are briefly reviewed. Capabilities of some commercial programs specially designed 

for the computation of forming limit curves (FLC) are also analyzed.  
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1 Introduction 

Formability describes the capability of a sheet metal to undergo plastic deformation 

in order to get some shape without defects. During the last decades different assessment 

methods of metals sheets formability have been developed. The most useful tool used to 

assess formability is the forming limit diagram (FLD). It has been almost 50 years since this 

concept was published by Keeler (1961; 1963) and then developed by Goodwin (1968) for 

the right side of the diagram. This method meets both manufacturer and user’s requirements 

and is widely used in factory and research laboratories. One of the major advantages of the 

FLD concept is that the plastic instability can also be described by theoretical models. A 

detailed presentation of this method can be found in the literature (Banabic, 2000a; Banabic, 

2000b; Banabic et at. 2007; Banabic, 2010; Hora & Krauer, 2006; Wagoner et at., 1989; Xu, 

2006). 

 Various theoretical models have been developed for the calculation of forming limit 

curves (FLC). The first ones were proposed by Swift (1952) and Hill (1952) assuming 

homogeneous sheet metals (the so-called models of diffuse necking and localized necking), 
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respectively). The Swift model has been developed later by Hora (so-called Modified 

Maximum Force Criterion - MMFC) (Hora &Tong, 1994; Hora et al., 1996; Hora &Tong, 

2008). Marciniak (1965) proposed a model taking into account that sheet metals are non-

homogeneous from both the geometrical and the microstructural point of view. Stören and 

Rice (1975) have been developed a model based on the bifurcation theory. Dudzinski and 

Molinari (1988) used the method of linear perturbations for analyzing the strain localization 

and computing the limit strains.  Bressan and Williams (1983) have introduced so-called 

“Through Thickness Shear Instability Criterion” in order to take into account the shear 

fracture mode. Based on the analysis of the influence of the stress distribution through the 

thickness on the mode of failure, Stoughton (2000) has proposed a generalized failure 

criterion. Since the theoretical models are rather complex and need a profound knowledge of 

continuum mechanics and mathematics while their results are not always in agreement with 

experiments, some semi-empirical models have been developed in recent years. The models 

used for FLC prediction are presented in detail (formulation of the model, solving methods, 

numerical aspects, advantages and limitations) in the book (Banabic, 2010). 

2 A briefly presentation of the Marciniak-Kuczynski model 

 Shortly after the publishing of the Forming Limit Diagram concept, on the basis of the 

experimental investigations concerning the strain localization of some specimens subjected 

to hydraulic bulging or punch stretching, Marciniak (1965) and Marciniak and Kuczynski 

(1967) developed a limit curve prediction model. This model is based on the hypothesis of 

the existence of imperfections in sheet metal. According to Marciniak’s hypothesis, sheet 

metal has, from manufacturing, geometrical imperfections (thickness variation) and/or 

structural imperfections (inclusions, gaps). In the forming process these imperfections 

progressively evolve and the plastic forming of the sheet metal is almost completely 

localized in them, leading to the necking of the sheet metal. The realism of this hypothesis 

has been experimentally shown by Azrin and Backofen (1970). This model has been 

intensely used and developed by researchers due to the advantages it offers: it has an 

intuitive physical background; it correctly predicts the influence of different process or 

material parameters on the limit strains; the predictions are precise enough; the model can be 

easily coupled with Finite Element simulation software for sheet metal forming processes. 

The main drawbacks of this model are: the prediction results are very sensitive to the 

constitutive equations used, as well as to the values of the non-homogeneity parameter; in 

the case of advanced material models, the equation system of the model is quite difficult to 



3 

solve and lacks robustness. 

 A few years later, Marciniak (1968) made a deep analysis of the strain localization 

phenomenon from the right side of the FLD and extended his initial model to cover this area. 

The models have periodically been brought in discussion by specialists in dedicated 

symposia (see Koistinen &Wang, 1978; Hecker et at. 1978; Wagoner et al. 1989; Hora & 

Krauer, 2006;) or in special sections in conferences (NUMISHEET, NUMIFORM, IDDRG, 

ESAFORM etc.). Further developments of the Marciniak limit curve prediction models are 

synthetically described in the review paper (Banabic et at., 2010). 

 On the basis of experimental investigations concerning strain localization, it was 

concluded that necking is usually initiated by a geometrical or structural non-homogeneity 

of the material (Marciniak, 1965). The analysis of the necking process has been performed 

assuming a geometrical non-homogeneity in the form of a thickness variation. This variation 

is usually due to some defects in the technological procedure used to obtain the sheet metal. 

The thickness variation is generally gentle. However, the theoretical model assumes a 

sudden variation in order to simplify the calculations (Figure 1). The theoretical model 

proposed by Marciniak assumes that the specimen has two regions: region “a” having a 

uniform thickness t0
a, and region “b” having the thickness t0

b. The initial geometrical non-

homogeneity of the specimen is described by the so-called “coefficient of geometrical non-

homogeneity”, f, expressed as the ratio of the thickness in the two regions: f=to
b/to

a. In the 

MK model, the strain and stress states in the two regions are analyzed and the principal 

strain ε1
b in region “b” in relation with the principal strain ε1

a in region “a” is monitored. 

When the ratio of these strains ε1
b/ ε1

a becomes too large (infinitely large in theory, but 

greater than 10 in practice), one may consider that the entire straining of the specimen is 

localized in region “b”. The shape and position of the curve ε1
a-ε1

b depend on the value of 

the f-coefficient. If f=1 (geometrically homogeneous sheet), the curve becomes coincident 

with the first bisector. Thus this theory cannot model the strain localization for 

geometrically homogeneous sheets. The value of the principal strain ε1
a in region “a” 

corresponding to non-significant straining of this region as compared to region “b” (the 

straining being localized in region “b”) represents the limit strain ε1
a*. This strain together 

with the second principal strain ε2
a* in region “a” define a point belonging to the FLC. 

Assuming different strain ratios ρ = dε2/dε1, one obtains different points on the FLC. 

Spanning the range 0 < ρ < 1, one gets the FLC for biaxial tension (ε1 > 0, ε2 > 0). In this 

domain, the orientation of the geometrical non-homogeneity with respect to the principal 

directions is assumed to be the same during the entire forming process. A detailed analysis 
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of the Marciniak-Kuckzynski model (formulation, solving methods, influence on the 

localization of the deformations etc.) is presented in the book (Banabic, 2010). 

 
 

Fig. 1 Geometrical model of the Marciniak-Kuczynski theory 
 

3 Developments of the Marciniak-Kuczynski model 

 During the last decade the research in the field of the forming limits prediction using 

Marciniak-Kuczynski model have been focused mainly on the following aspects. 

3.1 Implementation of new constitutive equations in the models used for the 
computation of the limit strains 

The results of the FLC prediction depend crucially on the constitutive equation of the 

material analyzed. The effect of the shape of the yield locus on the limit strains has been 

analyzed in detail by Barlat and Lian (1989). As we have emphasized in Banabic (2010), a 

lot of new yield criteria have been developed during the last decade. Many of those criteria 

have been already implemented in the computational models of the limit strains, in order to 

improve the predictive capabilities. Banabic have implemented various yield criteria in the 

MK model. For example he implemented Hill ’93 (Hill, 1993) yield criterion (Banabic, 

1999; Banabic & Dannenmann, 2001); BBC yield criteria (Banabic et at., 2004a; Banabic, 

2004; Paraianu et at. 2006); Cazacu-Barlat (Cazacu & Barlat, 2001) (Banabic et at., 2005b, 

Paraianu & Banabic, 2005; Paraianu et at. 2006). In figure 2 (Banabic, 2004) is presented 

the theoretical FLC predicted using BBC2003 criterion (Banabic et at., 2003) versus 

experimental data for AA5182-0 aluminium alloy. Mattiasson and Sigvant have analyzed in 
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a intensive program the influence of the yield locus shape on necking prediction (Mattiasson 

et at., 2007; Mattiasson et at., 2008; Mattiasson & Sigvant, 2008). Butuc used the Barlat 

(1997) (Butuc et at., 2002; Butuc et at., 2005; Butuc et at., 2006) and BBC2000 (Butuc et 

at., 2002) yield criteria. Cao and her coworkers (Cao et at., 2000; Yao & Cao, 2001) used 

the Karafillis and Boyce yield criterion (Karafillis & Boyce, 1993) in the MK model to 

analyze the effect of changing strain-paths on the FLC. Kuroda and Tvergaard (2000a) used 

four different yield criteria to fit a set of experimental data. Yld 2000 formulation (Barlat et 

at., 2000) has been included by Aretz (2004) in the MK model for studying the influence of 

the biaxial coefficient of plastic anisotropy on the FLCs. Kim et at. (2003) used the 

YLD2000 (Barlat et at., 2000) criterion to analyze the formability of a sandwich sheets. FLD 

for multi-layered sandwich sheets considering the material properties of each layer has been 

formulated with assumption of the visco-rigid plastic material based on the modified MK 

model (Kim et at., 2008). The anisotropic strain-rate potential was utilized for the plastic 

behavior of each layer. Vegter (Vegter et at., 1999; Vegter et at., 2008) have implemented 

their own yield criterion (Vegter & Boogaart, 2006) in the MK model. Ganjiani and 

Assempour (Ganjiani & Assempour, 2007a; Ganjiani & Assempour, 2007b; Ganjiani & 

Assempour, 2008) have improved the analytical approach for determination of FLC 

considering the effects of yield functions (Hosford, 1979; Karafillis & Boyce, 2003; Banabic 

et at., 2003). The Teodosiu hardening model (Teodosiu &Hu, 1995) associated with 

different yield criteria has been implemented by Butuc et at. (2003) and Haddag et at. (2008) 

in the MK theory for studying the influence of the loading path change on the limit strains. 

The effect of BBC2003 (Banabic et at., 2003) yield surface on the prediction of FLCs and 

the number of experimental anisotropy parameters on the accuracy of yield functions are 

studied by Ahmadi et at. (2009). The polynomial yield function developed by Soare et at. 

(2007) has been implemented in the MK model (Soare & Banabic, 2008) and has been used 

to analyze the sensitivity of the MK model to the shape of the yield surface (Soare & 

Banabic, 2009). 

3.2 Implementation of the polycrystalline models 

The adaptability of the texture based models to the MK theory of the strain localisation 

has been proved in the 1980’s by Bate (1984), Assaro (1985), Barlat (1985), Barlat (1987) 

and later by Van Houtte and Toth (1993), Inal et at. (2005), Savoie et at. (1998) and Wu et 

at. (1997), (1998), (2004), (2005), (2007). Later on, Viatkina et at. (2001) have used such 

models for the computation of FLCs. The texture-based yield criterion developed by Van 
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Houtte et at. (1994) has been implemented in FLC models (Van Houtte, 2005), the results 

being compared both with those provided by phenomenological models and with 

experimental data (Banabic, 2004). Van Houtte model (1994) coupled with a dislocation 

based hardening model (Teodosiu & Hu, 1995) have been implemented by Hiwatashi et at. 

(1998) and Van Houtte (2005) in order to predict the forming limits corresponding to change 

strain paths. A microstructural model developed for the description of the aluminium alloy 

hardening (ALFLOW) has been used by Berstad et at. (2004) to predict the forming limits of 

the AA3103-0 alloy. Boudeau et at. (1998), Boudeau and Gelin (2000) used the linear 

stability analysis combined with a polycrystalline model to predict and to analyze the 

influences on the FLC. A polycristal plasticity model has been used by McGinty (2004) to 

conduct parametric studies of FLC. Knockaert et at. (2000) have used a rate-independent 

polycrystalline plasticity to predict the limit strains. The influence of the texture on the FLCs 

has been studied by Kuroda (2005) and Fjedbo et at.(2005). More recently, Signorelly et at. 

(2009a), (2009b), John Neil and Agnew (2009) have analyzed the forming-limit strains 

using a rate-dependent plasticity, polycrystal, self-consistent (VPSC) model, in conjunction 

with the Marciniak–Kuczynski (M–K) approach. 
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Fig. 2 Theoretical FLC versus experimental data for AA5182-0 aluminium alloy 

3.3 Implementation of the ductile damage models 

Several types of ductile damage models have been developed during the time, e.g. 

Gurson, Kachanov, Chaboche, Gologanu (see details in (Lemaitre, 2001)). Those models 

have been frequently used during the last decade for the computation of the limit strains. 

Brunet et al. have used the Gologanu model (Gologanu et at., 1997) for calculating such 
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limit strains (Brunet et at., 2001; Brunet et at., 2002; Brunet et at., 2005). The effects of 

texture and damage evolution on the limit strains have been studied by Hu et at. (1998). 

Chow et at. have developed a ductile damage model and implemented it into the MK theory 

both for linear (Chow et at., 1997) and complex load paths (Chow &Yang, 2001; Chow et 

at., 2001). An anisotropic model of Gurson type has been used by Huang et at. (2000) for the 

computation of the FLCs. Ragab et at., (2002) use a new model to predict the FLC for 

kinematically hardened voided sheet metals. Han and Kim (2003) used an original ductile 

fracture criterion to calculate the FLC. Lemaitre’s ductile damage model has been also 

implemented by Teixeira (2006). Parsa et at. (2009) have determined the Forming Limit 

Curves for of sandwich sheet using the Gurson damage model. 

3.4 Enhancing the existing models to take into account new material or 
process parameters 

The influence of different parameters on the limit strains has been analyzed since the end of 

the 1960’s. More recently, several new introduced parameters have been included in the MK 

and MMFC models: the shape of the yield locus (Banabic & Dannenmann, 1999), the 

forming temperature (Abedrabbo, 2006), (Hora et at., 2007),(Krauer et at., 2008), (Zhang et 

at., 2008) and the coefficient of biaxial anisotropy (Aretz, 2006). The influences of the 

different effects on the limit strains have been studied: the effect of the surface defects 

(Hiroi & Nishimura, 1997) the effect of the void growth (Ragab & Saleh, 2000), the effect 

of grain size (Shakeri, 2000). Chan (2003) has developed a model of forming limits 

prediction for the superplastic forming. Predictive models of localized necking for strain-

rate-dependent sheet metals have been developed by Mattiasson et at. (2007), Mattiasson et 

at. (2008), Zhang et al. [313], Jie et at. (2009). The effect of the normal pressure on the 

formability of sheet metals is well known and has already been used in industry for a long 

time (Keeler, 1970). An analysis of sheet failure under normal pressure without assuming 

ductile damage has been done in the last period. Such an analysis was performed by using 

Swift-Hill models by Gotoh et at. (1995), Smith et at. (2003) and Matin and Smith (2005). 

Recently, Banabic and Soare (2008), Wu et at. (2008) and Alwood and Shouler (2008) have 

analyzed independently the influence of the normal pressure on the Forming Limit Curve 

using an enhanced MK model. The experimental researches of the Single Point Incremental 

Forming (SPIF) (Alwood et at. 2007; Jeswit & Young, 2005; Petek &Kuzman, 2007; Shim 

& Park, 2001) showed that the formability of the sheet in this process increases (the FLC is 

beyond the traditional FLC). Alwood et at. (2007) and Jackson and Alwood (2009) have 
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suggested that Through Thickness Shear influences formability in SPIF process. Based on 

these observations, Eyckens extend the MK model to analyze the influence of the Through 

Thickness Shear on the FLC (Eyckens et at., 2008; Eyckens et at., 2009; Eyckens et at., 

2010). 

3.5 Extending the FLC models for non-linear strain-paths 

During the sheet metal forming processes, the material is usually subjected to complex strain 

patterns. Nakazima et at. (1971) has proved that complex loads modify the shape and 

position of the FLC’s. This fact imposes the determination of the limit strains for complex 

strain-paths. The development of the computational models for complex strain-paths in the 

frame of the MK theory has become an active research field in the early 1980’s (see Barata 

and Jalinier, 1984; Barata et at., 1985; Wagoner et at., 1989). The refinement of those 

models has been intensively approached only during the last period. Butuc et at. (2002a); 

Butuc et at. (2002b); Butuc et at. (2005); Butuc et at. (2006) has developed a general 

computer code for the FLC computation in the case of complex load paths using various 

hardening models (both phenomenological – Swift, Voce, and miocrostructural ones – 

Teodosiu-Hu). Rajarajan et at. (2005) have validated the CRACH model for the case of 

complex strain-paths. Cao et at. (2000), Yao and Cao (2002) analyzed the influence of the 

changing strain paths on the limit strains. Hiwatashi et at. (1998) have used Teodosiu’s 

model for studying the influence on the strain-path change on FLCs. Kuroda and Tvergaard 

(2000b) have studied the effect of the strain-path change on the limit strains using four 

anisotropic models.  

3.6 Using advanced numerical methods for the solution of the limit strain 
models 

Wagoner and his co-workers have used the finite element method for the numerical 

determination of the limit strains in the frame of the MK theory (Narashima & Wagoner, 

1991; Zhou & Wagoner, 1991). Later on, FEM has been also used by Horstemayer et at. 

(1994), Tai and Lee (1996), Nandedkar and Narashima (1999), Gänser et at. (2003), 

Evangelista et at. (2002), Van der Boogaard and Huetink (2003), Lademo et at. (2004), 

Lademo et at. (2005), Berstad et at. (2004), Brunet et at. (2005), Paraianu and Banabic 

(2005), Teixeira et at. (2006), Hopperstad et at. (2006). The results reported by the 

researchers previously mentioned are promising. 
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3.7 Modeling the Forming Limit Band concept 

The first results on the influence of the variability of the material parameters on the 

Forming Limit Curves have been reported by van Minh et at. (1973). Karthik et at. (2002) 

have studied the coil-to-coil, test-to-test and laboratoty-to-laboratory variability of sheet 

formability using OSU formability test. On the basis of the variability of the limit strains 

established by experiments (Carleer & Sigvant, 2006; Rechberger & Till, 2004), Janssens et 

at. (2001) introduced the Forming Limit Band concept. This is a strip containing almost all 

of the limit strain states. The concept has been extended by Strano and Colosimo (2006a; 

2006b). Asuming the variability of the mechanical parameters of the sheet metal, Banabic 

and Vos (2007) and Vos and Banabic (2007) have developed a computational method of the 

Forming Limit Band. In the figure 3 is presented the predicted  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Forming Limit Band versus experimental data for AA6111-T43 aluminium alloy. A new 

model based on the assumption of the thickness variations of the sheet (modeled by use of 

random fields) to predict the Forming Limit Band has been proposed by Fyllingen et at. 

(2009). An approach to statistically evaluate the forming limit in hydroforming processes 

when taking into account the variations in the material parameters has been reported recently 

by Kim et at. (2009). 

3.8 Developing commercial codes for FLC computation 

In the last decade, more commercial programs for the limit strains prediction have been 
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Fig 3 Predicted Forming Limit Band versus experimental data for AA6111-T43 

aluminium alloy (LFLC-lower FLC, UFLC-upper FLC). 
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developed. In this section the most significant ones are presented. 

Based on a Marciniak-Kuczynski mode, Banabic (2006) and Jurco and Banabic (2005) 

have developed so-called FORM-CERT commercial code. The BBC 2005 yield criterion 

(Banabic et at., 2005a) is implemented in this model. This yield criterion can be reduced to 

simpler formulations (Hill 1948; Hill 1979; Barlat 1989). In this way, the yield criterion can 

be also used in the situations when only 2, 4, 5, 6, or 7 mechanical constants are available. 

The program consists in four modules: a graphical interface for input, a module for the 

identification and visualization of the yield surfaces, of the strain hardening laws and a 

module for calculating and visualizing the forming limit curves. The numerical results can 

be compared with experimental data, using the import/export facilities included in the 

program. The FORM-CERT code can be directly coupled with the finite element codes. 

Using the CRACH algorithm (based on the Marciniak-Kuczynski model), Gese and Dell 

(2006) have developed two software: CrachLAB, a product for prediction of the initial FLC 

and CrachFEM a product for coupling with the FEM codes. Criteria for ductile and shear 

fracture have been included in CrachFEM to cover the whole variety of fracture modes for 

sheet materials. The material model used to calculate instability describes: the initial 

anisotropy (using Hill (1948) and Dell et at. (2008) models), the combined isotropic-

kinematic hardening and the strain rate sensitivity Dell et at. (2008). CrachFEM is now 

included in the FEM codes PamStamp and PamCrash of ESI Group. 

4 Conclusions 

In the past, the FLC models provided an approximate description of the experimental results. 

Such models were used especially for obtaining qualitative information concerning the 

necking/tearing phenomena. 

At present, the FLC models allow a sufficiently accurate prediction of the limit strains, 

but each model suffers from its own limitations. There is no model that can be applied to 

any sort of sheet metal, any type of crystallographic structure, any strain- path or any 

variation range of the process parameters (strain rate, temperature, pressure, etc.). 

The future research will be focused on a more profound analysis of the phenomena 

accompanying the necking and fracture of the sheet metals. On the basis of the analysis, 

more realistic models will be developed in order to obtain better predictions of the limit 

strains. New models will be developed for prediction of the limit strains for special sheet 

metal forming processes: superplastic forming, forming at very high pressure, incremental 

forming etc. Commercial codes allowing the quick and accurate calculation of the FLC’s 
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both for linear and complex strain-paths will be developed. The texture models will be also 

implemented in such commercial programs. The FLC computation will be included in the 

finite element codes used for the simulation of the sheet metal forming processes. The aim is 

to develop automatic decision tools (based on artificial intelligence methods) useful in the 

technological design departments. The stochastic modeling of the FLC’s will be developed 

in order to increase the robustness of the sheet metal forming simulation programs. More 

refined, accurate and objective experimental methods for the experimental determination of 

the limit strains (e.g. methods based on thermal or acoustic effects) will be also developed. 
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