A review on recent developments of Marciniak-Kuczynski model

A tribute to Professor Marciniak

Dorel Banabic

CERTETA - Research Centre on Sheet Metal Forming Technical University of Cluj Napoca, Cluj Napoca, Romania

Abstract. First, the author contributed with some aspects concerning the chronology of the developments of the Marciniak model. A review of the recent developments in the last decade of Marciniak-Kuczynski model is presented in the paper. Implementation of the new constitutive and polycrystalline models, enhancing the existing models to take into account new material, process parameters and strain-paths, modeling the Forming Limit Band concept are briefly reviewed. Capabilities of some commercial programs specially designed for the computation of forming limit curves (FLC) are also analyzed.

Keywords: Formability, Forming Limit Diagrams, Marciniak-Kuczynski theory.

1 Introduction

Formability describes the capability of a sheet metal to undergo plastic deformation in order to get some shape without defects. During the last decades different assessment methods of metals sheets formability have been developed. The most useful tool used to assess formability is the forming limit diagram (FLD). It has been almost 50 years since this concept was published by Keeler (1961; 1963) and then developed by Goodwin (1968) for the right side of the diagram. This method meets both manufacturer and user's requirements and is widely used in factory and research laboratories. One of the major advantages of the FLD concept is that the plastic instability can also be described by theoretical models. A detailed presentation of this method can be found in the literature (Banabic, 2000a; Banabic, 2000b; Banabic et at. 2007; Banabic, 2010; Hora & Krauer, 2006; Wagoner et at., 1989; Xu, 2006).

Various theoretical models have been developed for the calculation of forming limit curves (FLC). The first ones were proposed by Swift (1952) and Hill (1952) assuming homogeneous sheet metals (the so-called models of diffuse necking and localized necking), respectively). The Swift model has been developed later by Hora (so-called Modified Maximum Force Criterion - MMFC) (Hora &Tong, 1994; Hora et al., 1996; Hora &Tong, 2008). Marciniak (1965) proposed a model taking into account that sheet metals are non-homogeneous from both the geometrical and the microstructural point of view. Stören and Rice (1975) have been developed a model based on the bifurcation theory. Dudzinski and Molinari (1988) used the method of linear perturbations for analyzing the strain localization and computing the limit strains. Bressan and Williams (1983) have introduced so-called "Through Thickness Shear Instability Criterion" in order to take into account the shear fracture mode. Based on the analysis of the influence of the stress distribution through the thickness on the mode of failure, Stoughton (2000) has proposed a generalized failure criterion. Since the theoretical models are rather complex and need a profound knowledge of continuum mechanics and mathematics while their results are not always in agreement with experiments, some semi-empirical models have been developed in recent years. The models used for FLC prediction are presented in detail (formulation of the model, solving methods, numerical aspects, advantages and limitations) in the book (Banabic, 2010).

2 A briefly presentation of the Marciniak-Kuczynski model

Shortly after the publishing of the Forming Limit Diagram concept, on the basis of the experimental investigations concerning the strain localization of some specimens subjected to hydraulic bulging or punch stretching, Marciniak (1965) and Marciniak and Kuczynski (1967) developed a limit curve prediction model. This model is based on the hypothesis of the existence of imperfections in sheet metal. According to Marciniak's hypothesis, sheet metal has, from manufacturing, geometrical imperfections (thickness variation) and/or structural imperfections (inclusions, gaps). In the forming process these imperfections progressively evolve and the plastic forming of the sheet metal is almost completely localized in them, leading to the necking of the sheet metal. The realism of this hypothesis has been experimentally shown by Azrin and Backofen (1970). This model has been intensely used and developed by researchers due to the advantages it offers: it has an intuitive physical background; it correctly predicts the influence of different process or material parameters on the limit strains; the predictions are precise enough; the model can be easily coupled with Finite Element simulation software for sheet metal forming processes. The main drawbacks of this model are: the prediction results are very sensitive to the constitutive equations used, as well as to the values of the non-homogeneity parameter; in the case of advanced material models, the equation system of the model is quite difficult to

solve and lacks robustness.

A few years later, Marciniak (1968) made a deep analysis of the strain localization phenomenon from the right side of the FLD and extended his initial model to cover this area. The models have periodically been brought in discussion by specialists in dedicated symposia (see Koistinen &Wang, 1978; Hecker et at. 1978; Wagoner et al. 1989; Hora & Krauer, 2006;) or in special sections in conferences (NUMISHEET, NUMIFORM, IDDRG, ESAFORM etc.). Further developments of the Marciniak limit curve prediction models are synthetically described in the review paper (Banabic et at., 2010).

On the basis of experimental investigations concerning strain localization, it was concluded that necking is usually initiated by a geometrical or structural non-homogeneity of the material (Marciniak, 1965). The analysis of the necking process has been performed assuming a geometrical non-homogeneity in the form of a thickness variation. This variation is usually due to some defects in the technological procedure used to obtain the sheet metal. The thickness variation is generally gentle. However, the theoretical model assumes a sudden variation in order to simplify the calculations (Figure 1). The theoretical model proposed by Marciniak assumes that the specimen has two regions: region "a" having a uniform thickness t_0^a , and region "b" having the thickness t_0^b . The initial geometrical nonhomogeneity of the specimen is described by the so-called "coefficient of geometrical nonhomogeneity", f, expressed as the ratio of the thickness in the two regions: $f=t_o^{b}/t_o^{a}$. In the MK model, the strain and stress states in the two regions are analyzed and the principal strain $\varepsilon_I^{\ b}$ in region "b" in relation with the principal strain $\varepsilon_I^{\ a}$ in region "a" is monitored. When the ratio of these strains $\varepsilon_l^{\ b} / \varepsilon_l^{\ a}$ becomes too large (infinitely large in theory, but greater than 10 in practice), one may consider that the entire straining of the specimen is localized in region "b". The shape and position of the curve $\varepsilon_l^a - \varepsilon_l^b$ depend on the value of the f-coefficient. If f=1 (geometrically homogeneous sheet), the curve becomes coincident with the first bisector. Thus this theory cannot model the strain localization for geometrically homogeneous sheets. The value of the principal strain ε_l^a in region "a" corresponding to non-significant straining of this region as compared to region "b" (the straining being localized in region "b") represents the limit strain $\varepsilon_l^{a^*}$. This strain together with the second principal strain $\varepsilon_2^{a^*}$ in region "a" define a point belonging to the FLC. Assuming different strain ratios $\rho = d\varepsilon_2/d\varepsilon_1$, one obtains different points on the FLC. Spanning the range $0 < \rho < 1$, one gets the FLC for biaxial tension ($\varepsilon_1 > 0$, $\varepsilon_2 > 0$). In this domain, the orientation of the geometrical non-homogeneity with respect to the principal directions is assumed to be the same during the entire forming process. A detailed analysis

of the Marciniak-Kuckzynski model (formulation, solving methods, influence on the localization of the deformations etc.) is presented in the book (Banabic, 2010).

Fig. 1 Geometrical model of the Marciniak-Kuczynski theory

3 Developments of the Marciniak-Kuczynski model

During the last decade the research in the field of the forming limits prediction using Marciniak-Kuczynski model have been focused mainly on the following aspects.

3.1 Implementation of new constitutive equations in the models used for the computation of the limit strains

The results of the FLC prediction depend crucially on the constitutive equation of the material analyzed. The effect of the shape of the yield locus on the limit strains has been analyzed in detail by Barlat and Lian (1989). As we have emphasized in Banabic (2010), a lot of new yield criteria have been developed during the last decade. Many of those criteria have been already implemented in the computational models of the limit strains, in order to improve the predictive capabilities. Banabic have implemented various yield criteria in the MK model. For example he implemented Hill '93 (Hill, 1993) yield criterion (Banabic, 1999; Banabic & Dannenmann, 2001); BBC yield criteria (Banabic et at., 2004a; Banabic, 2004; Paraianu et at. 2006); Cazacu-Barlat (Cazacu & Barlat, 2001) (Banabic et at., 2005b, Paraianu & Banabic, 2005; Paraianu et at. 2006). In figure 2 (Banabic, 2004) is presented the theoretical FLC predicted using BBC2003 criterion (Banabic et at., 2003) versus experimental data for AA5182-0 aluminium alloy. Mattiasson and Sigvant have analyzed in

a intensive program the influence of the yield locus shape on necking prediction (Mattiasson et at., 2007; Mattiasson et at., 2008; Mattiasson & Sigvant, 2008). Butuc used the Barlat (1997) (Butuc et at., 2002; Butuc et at., 2005; Butuc et at., 2006) and BBC2000 (Butuc et at., 2002) yield criteria. Cao and her coworkers (Cao et at., 2000; Yao & Cao, 2001) used the Karafillis and Boyce yield criterion (Karafillis & Boyce, 1993) in the MK model to analyze the effect of changing strain-paths on the FLC. Kuroda and Tvergaard (2000a) used four different yield criteria to fit a set of experimental data. Yld 2000 formulation (Barlat et at., 2000) has been included by Aretz (2004) in the MK model for studying the influence of the biaxial coefficient of plastic anisotropy on the FLCs. Kim et at. (2003) used the YLD2000 (Barlat et at., 2000) criterion to analyze the formability of a sandwich sheets. FLD for multi-layered sandwich sheets considering the material properties of each layer has been formulated with assumption of the visco-rigid plastic material based on the modified MK model (Kim et at., 2008). The anisotropic strain-rate potential was utilized for the plastic behavior of each layer. Vegter (Vegter et at., 1999; Vegter et at., 2008) have implemented their own yield criterion (Vegter & Boogaart, 2006) in the MK model. Ganjiani and Assempour (Ganjiani & Assempour, 2007a; Ganjiani & Assempour, 2007b; Ganjiani & Assempour, 2008) have improved the analytical approach for determination of FLC considering the effects of yield functions (Hosford, 1979; Karafillis & Boyce, 2003; Banabic et at., 2003). The Teodosiu hardening model (Teodosiu &Hu, 1995) associated with different yield criteria has been implemented by Butuc et at. (2003) and Haddag et at. (2008) in the MK theory for studying the influence of the loading path change on the limit strains. The effect of BBC2003 (Banabic et at., 2003) yield surface on the prediction of FLCs and the number of experimental anisotropy parameters on the accuracy of yield functions are studied by Ahmadi et at. (2009). The polynomial yield function developed by Soare et at. (2007) has been implemented in the MK model (Soare & Banabic, 2008) and has been used to analyze the sensitivity of the MK model to the shape of the yield surface (Soare & Banabic, 2009).

3.2 Implementation of the polycrystalline models

The adaptability of the texture based models to the MK theory of the strain localisation has been proved in the 1980's by Bate (1984), Assaro (1985), Barlat (1985), Barlat (1987) and later by Van Houtte and Toth (1993), Inal et at. (2005), Savoie et at. (1998) and Wu et at. (1997), (1998), (2004), (2005), (2007). Later on, Viatkina et at. (2001) have used such models for the computation of FLCs. The texture-based yield criterion developed by Van

Houtte et at. (1994) has been implemented in FLC models (Van Houtte, 2005), the results being compared both with those provided by phenomenological models and with experimental data (Banabic, 2004). Van Houtte model (1994) coupled with a dislocation based hardening model (Teodosiu & Hu, 1995) have been implemented by Hiwatashi et at. (1998) and Van Houtte (2005) in order to predict the forming limits corresponding to change strain paths. A microstructural model developed for the description of the aluminium alloy hardening (ALFLOW) has been used by Berstad et at. (2004) to predict the forming limits of the AA3103-0 alloy. Boudeau et at. (1998), Boudeau and Gelin (2000) used the linear stability analysis combined with a polycrystalline model to predict and to analyze the influences on the FLC. A polycristal plasticity model has been used by McGinty (2004) to conduct parametric studies of FLC. Knockaert et at. (2000) have used a rate-independent polycrystalline plasticity to predict the limit strains. The influence of the texture on the FLCs has been studied by Kuroda (2005) and Fjedbo et at.(2005). More recently, Signorelly et at. (2009a), (2009b), John Neil and Agnew (2009) have analyzed the forming-limit strains using a rate-dependent plasticity, polycrystal, self-consistent (VPSC) model, in conjunction with the Marciniak-Kuczynski (M-K) approach.

Fig. 2 Theoretical FLC versus experimental data for AA5182-0 aluminium alloy

3.3 Implementation of the ductile damage models

Several types of ductile damage models have been developed during the time, e.g. Gurson, Kachanov, Chaboche, Gologanu (see details in (Lemaitre, 2001)). Those models have been frequently used during the last decade for the computation of the limit strains. Brunet et al. have used the Gologanu model (Gologanu et at., 1997) for calculating such

limit strains (Brunet et at., 2001; Brunet et at., 2002; Brunet et at., 2005). The effects of texture and damage evolution on the limit strains have been studied by Hu et at. (1998). Chow et at. have developed a ductile damage model and implemented it into the MK theory both for linear (Chow et at., 1997) and complex load paths (Chow &Yang, 2001; Chow et at., 2001). An anisotropic model of Gurson type has been used by Huang et at. (2000) for the computation of the FLCs. Ragab et at., (2002) use a new model to predict the FLC for kinematically hardened voided sheet metals. Han and Kim (2003) used an original ductile fracture criterion to calculate the FLC. Lemaitre's ductile damage model has been also implemented by Teixeira (2006). Parsa et at. (2009) have determined the Forming Limit Curves for of sandwich sheet using the Gurson damage model.

3.4 Enhancing the existing models to take into account new material or process parameters

The influence of different parameters on the limit strains has been analyzed since the end of the 1960's. More recently, several new introduced parameters have been included in the MK and MMFC models: the shape of the yield locus (Banabic & Dannenmann, 1999), the forming temperature (Abedrabbo, 2006), (Hora et at., 2007), (Krauer et at., 2008), (Zhang et at., 2008) and the coefficient of biaxial anisotropy (Aretz, 2006). The influences of the different effects on the limit strains have been studied: the effect of the surface defects (Hiroi & Nishimura, 1997) the effect of the void growth (Ragab & Saleh, 2000), the effect of grain size (Shakeri, 2000). Chan (2003) has developed a model of forming limits prediction for the superplastic forming. Predictive models of localized necking for strainrate-dependent sheet metals have been developed by Mattiasson et at. (2007), Mattiasson et at. (2008), Zhang et al. [313], Jie et at. (2009). The effect of the normal pressure on the formability of sheet metals is well known and has already been used in industry for a long time (Keeler, 1970). An analysis of sheet failure under normal pressure without assuming ductile damage has been done in the last period. Such an analysis was performed by using Swift-Hill models by Gotoh et at. (1995), Smith et at. (2003) and Matin and Smith (2005). Recently, Banabic and Soare (2008), Wu et at. (2008) and Alwood and Shouler (2008) have analyzed independently the influence of the normal pressure on the Forming Limit Curve using an enhanced MK model. The experimental researches of the Single Point Incremental Forming (SPIF) (Alwood et at. 2007; Jeswit & Young, 2005; Petek & Kuzman, 2007; Shim & Park, 2001) showed that the formability of the sheet in this process increases (the FLC is beyond the traditional FLC). Alwood et at. (2007) and Jackson and Alwood (2009) have

suggested that Through Thickness Shear influences formability in SPIF process. Based on these observations, Eyckens extend the MK model to analyze the influence of the Through Thickness Shear on the FLC (Eyckens et at., 2008; Eyckens et at., 2009; Eyckens et at., 2010).

3.5 Extending the FLC models for non-linear strain-paths

During the sheet metal forming processes, the material is usually subjected to complex strain patterns. Nakazima et at. (1971) has proved that complex loads modify the shape and position of the FLC's. This fact imposes the determination of the limit strains for complex strain-paths. The development of the computational models for complex strain-paths in the frame of the MK theory has become an active research field in the early 1980's (see Barata and Jalinier, 1984; Barata et at., 1985; Wagoner et at., 1989). The refinement of those models has been intensively approached only during the last period. Butuc et at. (2002a); Butuc et at. (2002b); Butuc et at. (2005); Butuc et at. (2006) has developed a general computer code for the FLC computation in the case of complex load paths using various hardening models (both phenomenological - Swift, Voce, and miocrostructural ones -Teodosiu-Hu). Rajarajan et at. (2005) have validated the CRACH model for the case of complex strain-paths. Cao et at. (2000), Yao and Cao (2002) analyzed the influence of the changing strain paths on the limit strains. Hiwatashi et at. (1998) have used Teodosiu's model for studying the influence on the strain-path change on FLCs. Kuroda and Tvergaard (2000b) have studied the effect of the strain-path change on the limit strains using four anisotropic models.

3.6 Using advanced numerical methods for the solution of the limit strain models

Wagoner and his co-workers have used the finite element method for the numerical determination of the limit strains in the frame of the MK theory (Narashima & Wagoner, 1991; Zhou & Wagoner, 1991). Later on, FEM has been also used by Horstemayer et at. (1994), Tai and Lee (1996), Nandedkar and Narashima (1999), Gänser et at. (2003), Evangelista et at. (2002), Van der Boogaard and Huetink (2003), Lademo et at. (2004), Lademo et at. (2005), Berstad et at. (2004), Brunet et at. (2005), Paraianu and Banabic (2005), Teixeira et at. (2006), Hopperstad et at. (2006). The results reported by the researchers previously mentioned are promising.

3.7 Modeling the Forming Limit Band concept

The first results on the influence of the variability of the material parameters on the Forming Limit Curves have been reported by van Minh et at. (1973). Karthik et at. (2002) have studied the coil-to-coil, test-to-test and laboratoty-to-laboratory variability of sheet formability using OSU formability test. On the basis of the variability of the limit strains established by experiments (Carleer & Sigvant, 2006; Rechberger & Till, 2004), Janssens et at. (2001) introduced the Forming Limit Band concept. This is a strip containing almost all of the limit strain states. The concept has been extended by Strano and Colosimo (2006a; 2006b). Asuming the variability of the mechanical parameters of the sheet metal, Banabic and Vos (2007) and Vos and Banabic (2007) have developed a computational method of the Forming Limit Band. In the figure 3 is presented the predicted

Fig 3 Predicted Forming Limit Band versus experimental data for AA6111-T43 aluminium alloy (LFLC-lower FLC, UFLC-upper FLC).

Forming Limit Band versus experimental data for AA6111-T43 aluminium alloy. A new model based on the assumption of the thickness variations of the sheet (modeled by use of random fields) to predict the Forming Limit Band has been proposed by Fyllingen et at. (2009). An approach to statistically evaluate the forming limit in hydroforming processes when taking into account the variations in the material parameters has been reported recently by Kim et at. (2009).

3.8 Developing commercial codes for FLC computation

In the last decade, more commercial programs for the limit strains prediction have been

developed. In this section the most significant ones are presented.

Based on a Marciniak-Kuczynski mode, Banabic (2006) and Jurco and Banabic (2005) have developed so-called FORM-CERT commercial code. The BBC 2005 yield criterion (Banabic et at., 2005a) is implemented in this model. This yield criterion can be reduced to simpler formulations (Hill 1948; Hill 1979; Barlat 1989). In this way, the yield criterion can be also used in the situations when only 2, 4, 5, 6, or 7 mechanical constants are available. The program consists in four modules: a graphical interface for input, a module for the identification and visualization of the yield surfaces, of the strain hardening laws and a module for calculating and visualizing the forming limit curves. The numerical results can be compared with experimental data, using the import/export facilities included in the program. The FORM-CERT code can be directly coupled with the finite element codes.

Using the CRACH algorithm (based on the Marciniak-Kuczynski model), Gese and Dell (2006) have developed two software: CrachLAB, a product for prediction of the initial FLC and CrachFEM a product for coupling with the FEM codes. Criteria for ductile and shear fracture have been included in CrachFEM to cover the whole variety of fracture modes for sheet materials. The material model used to calculate instability describes: the initial anisotropy (using Hill (1948) and Dell et at. (2008) models), the combined isotropic-kinematic hardening and the strain rate sensitivity Dell et at. (2008). CrachFEM is now included in the FEM codes PamStamp and PamCrash of ESI Group.

4 Conclusions

In the past, the FLC models provided an approximate description of the experimental results. Such models were used especially for obtaining qualitative information concerning the necking/tearing phenomena.

At present, the FLC models allow a sufficiently accurate prediction of the limit strains, but each model suffers from its own limitations. There is no model that can be applied to any sort of sheet metal, any type of crystallographic structure, any strain- path or any variation range of the process parameters (strain rate, temperature, pressure, etc.).

The future research will be focused on a more profound analysis of the phenomena accompanying the necking and fracture of the sheet metals. On the basis of the analysis, more realistic models will be developed in order to obtain better predictions of the limit strains. New models will be developed for prediction of the limit strains for special sheet metal forming processes: superplastic forming, forming at very high pressure, incremental forming etc. Commercial codes allowing the quick and accurate calculation of the FLC's

both for linear and complex strain-paths will be developed. The texture models will be also implemented in such commercial programs. The FLC computation will be included in the finite element codes used for the simulation of the sheet metal forming processes. The aim is to develop automatic decision tools (based on artificial intelligence methods) useful in the technological design departments. The stochastic modeling of the FLC's will be developed in order to increase the robustness of the sheet metal forming simulation programs. More refined, accurate and objective experimental methods for the experimental determination of the limit strains (e.g. methods based on thermal or acoustic effects) will be also developed.

Acknowledgments

The author is deeply grateful to Professor Z. Marciniak, his doctor father. The help and support of Professor Marciniak in the early '90 were essential for the author's scientific career.

The work was supported by the Romanian National University Research Council in the frame of the project PCCE ID-100.

References

- 1 Abedrabbo, N., Pourboghrat, F., Carsley, J., 2006, Forming of aluminum alloys at elevated temperatures, *Int. J. Plasticity*, 22, 314-373.
- Ahmadi, S., Eivani, A.R., Akbarzadeh, A., 2009, An experimental and theoretical study on the prediction of Forming Limit Diagrams using new BBC yield criteria and M–K analysis, *Computational Materials Science*, 44, 1272-1280.
- 3 Allwood, J.M., Shouler, D.R, Tekkaya, A.E., 2007, The increased forming limits of incremental sheet forming processes, *Key Engineering Materials*, 344, 621-628.
- 4 Allwood, J.M., Shouler, D.R., 2008, Generalised forming limit diagrams showing increased forming limits with non-planar stress states, *International Journal of Plasticity*, 25, 1207-1230.
- 5 Aretz, H., 2004, Numerical restrictions of the modified maximum force criterion for prediction of forming limits in sheet metal forming, *Modelling Simul. Mater. Sci. Eng.*, 12, 677-692.
- Aretz, H., 2006, Impact of the equibiaxial plastic strain ratio on the FLD prediction.
 In: Juster, N., Rosochowski, A. (eds.): *Proc. 9th ESAFORM Conference on Material Forming. Glasgow*, AKAPIT, Krakow, 311-314.

- 7 Asaro, R.J., Needleman, A., 1985, Texture development and strain hardening in ratedependent polycrystals, *Acta Metall*, 33, 923-953.
- 8 Azrin, M., Backofen, W.A., 1970, The deformation and failure of a biaxially stretched sheet, *Metall. Trans.*, 1, 2857-2861.
- 9 Banabic, D., 1999, Limit strains in the sheet metals by using the 1993 Hill's yield criterion, *J. Materials Process. Techn.*, 92-93, 429-432.
- 10 Banabic, D., Comsa, D.S., Balan, T., 2000, A new yield criterion for orthotropic sheet metals under plane –stress conditions, In: Banabic, D. (ed.): *Proc. of the 7th Conf. ,,TPR2000*", Cluj Napoca, 217-224.
- Banabic, D., 2000a, *Forming Limits of Sheet Metals*, In: Banabic, D. (ed.):
 Formability of Metallic Materials, Springer-Verlag, Berlin Heidelberg New York, 173-215.
- Banabic, D., 2000b, *Theoretical Models of the FLD's*. In: Banabic, D. (ed.):
 Formability of Metallic Materials, Springer-Verlag, Berlin Heidelberg New York, 317-327.
- 13 Banabic, D., Dannenmann, E., 2001, The influence of the yield locus shape on the limits strains, *J. Materials Process. Techn.*, 109, 9-12.
- 14 Banabic, D., Kuwabara, T., Balan, T., Comsa, D.S., Julean, D., 2003, Non-quadratic yield criterion for orthotropic sheet metals under plane-stress conditions, *Int. J. Mech. Sci.*, 45, 797-811.
- 15 Banabic, D. et al., 2004, FLD theoretical model using a new anisotropic yield criterion, *J. Materials Process. Techn.*, 157-158, 23-27.
- Banabic, D. et al. 2004, Prediction of FLC from two anisotropic constitutive models, In: Stören, S. (ed.): *Proc.* 7th ESAFORM Conference on Material Forming. Trondheim, 455-459.
- 17 Banabic, D., 2004, Anisotropy and formability of AA5182-0 aluminium alloy sheets, *Annales of CIRP*, 53, 219-222.
- 18 Banabic, D., Aretz, H., Comsa, D.S., Paraianu, L., 2005a, An improved analytical description of orthotropy in metallic sheets, *Int. J. Plasticity*, 21, 493–512.
- Banabic, D., Cazacu, O., Paraianu, L., Jurco, P., 2005b, Recent Developments in the Formability of Aluminum Alloys, In: Smith, L.M., Pourboghrat, F., Yoon, J.-W., Stoughton, T.B. (eds): *Proc. of the NUMISHEET 2005 Conference*, 466-472.
- 20 Banabic, D., 2006, Numerical prediction of FLC using the M-K-Model combined with advanced material models. In: Hora, P. (ed): *Numerical and experimental*

methods in prediction of forming limits in sheet forming and tube hydroforming processes, ETH Zürich, Zürich, 37-42.

- 21 Banabic, D., Vos, M., 2007, Increasing the robustness in the simulation of sheet metal forming processes using a new concept - Forming Limit Band, *Annales of CIRP*, 56, 249-252.
- Banabic, D., Barlat, F., Cazacu, O., Kuwabara T., 2007, Anisotropy and formability.
 In: *Advances in Material Forming-ESAFORM 10 Years on*, (Eds: Chinesta, F.,
 Cueto, E.), Springer, Heidelberg-Berlin, 143-173.
- Banabic, D., Soare, S., 2008, On the effect of the normal pressure upon the forming limit strains. In: Hora, P. (ed.): *Proc. of the NUMISHEET 2008 Conf.*, Interlaken, Switzerland, 199-204.
- 24 Banabic, D., Barlat, F., Cazacu, O., Kuwabara, T., 2010, Advances in anisotropy and formability. *Int. J. Mater. Form.*, 3, 165-189.
- 25 Banabic, D., 2010, Sheet Metal Forming Processes, Springer, Heidelberg.
- 26 Barata da Rocha, A., Jalinier, J.M., 1984, Plastic instability of sheet metals under simple and complex strain path, *Trans. Iron Steel Inst.*, 24, 133-140.
- 27 Barata da Rocha, A., Barlat, F., Jalinier, J.M., 1985, Prediction of the forming limit diagrams of anisotropic sheets in linear and non-linear loading, *Mat. Sci. Eng.*, 68, 151-164.
- 28 Barlat, F., Richmond, O., 1985, Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured FCC sheets. *Mat. Sci. Eng.*, 95, 15-29.
- 29 Barlat, F., 1987, Crystallographic texture, anisotropic yield surfaces and forming limits of sheet metals, *Mat. Sci. Eng.*, 91, 55-72.
- Barlat, F., Lian, J., 1989, Plastic Behavior and Stretchability of Sheet Metals. Part I:
 Yield Function for Orthotropic Sheets under Plane Stress Conditions, *Int. J. Plasticity*, 5, 51–66.
- Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat,
 F., Choi, S.-H., Chu, E., 2003, Plane stress yield function for aluminum alloy sheet Part I: Theory, *Int. J. Plasticity*, 19, 1297-1319.
- 32 Bate, P., 1984, The prediction of limit strains in steel sheet using a discrete slip plasticity model, *Int. J. Mech. Sci.*, 26, 373-384.

- 33 Berstad, T. et al., 2004, FEM and a microstructure based work-hardening model used to calculate FLCs. In: Stören, S. (ed.): *Proc.* 7th ESAFORM Conference on Material Forming, Trondheim, 131-134.
- 34 Boudeau, N., Gelin J.C., Salhi, S., 1998, Computational prediction of the localized necking in sheet forming based on microstructural material aspects, *Computational Materials Science*, 11, 45-64.
- 35 Boudeau, N., Gelin, J.C., 2000, Necking in sheet metal forming. Influence of macroscopic and microscopic properties of materials, *Int. J. Mech. Sciences*, 42, 2209-2232.
- 36 Bressan, J.D., Williams, J.A., 1983, The use of a shear instability criterion to predict local necking in sheet metal deformation, *Int. J. Mech. Sciences*, 25, 155-168.
- Brunet, M., Morestin, F., Walter, H., 2001, Damage modeling in sheet metals forming processes with experimental validations, In: Habraken, A.M. (ed.): *Proc. 4th ESAFORM Conference on Material Forming*, Liege, 209-212.
- Brunet, M., Morestin, F., Walter, H., 2002, Anisotropic ductile fracture in sheet metal forming processes using damage theory, In: Pietrzyk, M., Mitura, Z., Kaczmat, J. (eds.): *Proc. 5th ESAFORM Conference on Material Forming*, Krakow , 135-138.
- 39 Brunet, M., Morestin, F., Walter-Laberre, H., 2005, Failure analysis of anisotropic sheet metals using a non-local plastic damage model, *J. Materials Process. Techn.*, 170, 457-470.
- 40 Brunet M., Clerc P.,2007, Two prediction methods for ductile sheet metal failure, In: *Proc.* 10th ESAFORM Conference on Material Forming, Zaragoza, 297-302.
- 41 Butuc, C. et al., 2002a, A more general model for FLD prediction, *J. Materials Proc. Techn.*, 125-126, 213-218.
- Butuc, C. et al., 2002b, Influence of constitutive equations and strain-path change on the forming limit diagram for 5182 Aluminum Alloy. In: Pietrzyk, M., Mitura, Z., Kaczmat, J. (eds.): *Proc. 5th ESAFORM Conference on Material Forming*, Krakow, 715-719.
- 43 Butuc, C., Gracio, J.J., Barata da Rocha, A., 2003, A theoretical study on forming limit diagrams prediction, *J. Material Proc. Techn.*, 142, 714–724.
- Butuc, C., Gracio, J.J., Barata da Rocha, A., 2005, Application of the YLD 96 yield criterion on describing the anisotropy and formability of the BCC materials, In:
 Banabic, D. (ed.): *Proc. 8th ESAFORM Conference on Material Forming*, Cluj-Napoca, The Publishing House of the Romanian Academy, Bucharest, 391-394.

- 45 Butuc, C. et al., 2006, An experimental and theoretical analysis on the application of stress-based forming limit criterion. *Int. J. Mech. Sci.*, 48, 414–429.
- 46 Cao, J. et al., 2000, Prediction of localized thinning in sheet metal using a general anisotropic yield criterion, *Int. J. Plasticity*, 16, 1105-1129.
- 47 Carleer, B., Sigvant, M., 2006, Process Scatter with Respect to Material Scatter. In: Liewald, M. (ed.): *New Developments in Sheet Metal Forming*. Institute for Metal Forming Technology, University of Stuttgart, 225-239.
- 48 Cazacu, O., Barlat, F., 2001, Generalization of Drucker's yield criterion to orthotropy, *Mathematics and Mechanics of Solids*, 6, 613-630.
- Chan, K.C., Tong G.Q., 2003, Formability of high-strain-rate superplastic Al-4.4Cu 1.5Mg/21SiCW, composite under biaxial tension, *Material Science Eng.*, A340, 49 57.
- 50 Chow, C.L. et al., 1997, A unified damage approach for predicting FLDs, *Trans ASME, J. Eng. Materials Techn.*, 119, 346-353.
- 51 Chow, C.L., Yang X.J., 2001, Prediction of the FLD on the basis of the damage criterion under non-proportional loading, *Proc. Instn. Mechn. Eng.*, 215C, 405-414.
- 52 Chow, C.L. et al., 2001, Prediction of FLD for AL6111-T4 under non-proportional loading, *Int. J. Mech. Sciences*, 43, 471-486.
- 53 Dell, H., Gese, H., Oberhofer, G., 2008, Advanced yield loci and anisotropic hardening in the material model MF GENYLD + CRACHFEM. In: Hora, P. (ed.): *Proc. of the NUMISHEET 2008 Conf.*, Interlaken, Switzerland, 49-54.
- 54 Dudzinski, D., Molinari, A., 1988, Instability of visco-plastic deformation in biaxial loading, *C.R. Acad. Sci. Paris*, 307, 1315-1321.
- 55 Evangelista, S.H. et al., 2002, Implementing a modified Marciniak-Kuczynki model using the FEM for the simulation of sheet metal deep drawing, J. *Materials Process*. *Techn.*, 130-131, 135-144.
- 56 Eyckens, P., Van Bael, A., Van Houtte, P., 2008, An extended Marciniak-Kuczynski forming limit model to assess the influence of Through-Thickness Shear on formability. In: Hora, P. (ed.): *Proc. of the NUMISHEET 2008 Conf.*, Interlaken, Switzerland, 193-198.
- 57 Eyckens, P., Van Bael, A., Van Houtte, P., 2009, Marciniak-Kuczynski type modelling of the effect of Through-Thickness Shear on the forming limits of sheet metal, *Int. J. Plasticity*, 25, 2249-2268.

- 58 Eyckens, P., Van Bael, A., Van Houtte, P., 2010, An extended Marciniak-Kuczynski model for anisotropic sheet subjected to monotonic strain paths with throughthickness shear, *Int. J. Plasticity*, 26, (in press).
- Fjeldbo, S.K. et al., 2005, A numerical study on the onset of plastic instability in extruded materials with strong through-thickness texture variation. In: Banabic, D. (ed.): *Proc. 8th ESAFORM Conference on Material Forming*, Cluj-Napoca, The Publishing House of the Romanian Academy, Bucharest, 209-213.
- 60 Fyllingen, O. et al., 2009, Estimation of forming limit diagrams by the use of the finite element method and Monte Carlo simulation, *Computers and Structures* 87, 128–139.
- 61 Ganjiani, M., Assempour, A., 2007a, An improved analytical approach for determination of FLD considering the effects of yield functions, *J. Materials Process. Techn.*, 182, 598-607.
- 62 Ganjiani, M., Assempour, A., 2007b, The performance of Karafillis-Boyce yield function on determination of forming limit diagrams, *IJE Transactions A: Basics*, 20, 55-66.
- 63 Ganjiani, M., Assempour, A., 2008, Implementation of a robust algorithm for prediction of Forming Limit Diagrams, *Journal of Materials Engineering and Performance*, 17, 1-6.
- 64 Gänser, H.P., Werner, E.A., Fisher, F.D., 2000, FLDs: a micromechanical approach, *Int. J. Mech. Sciences*, 42, 2041-2054.
- Gese, H., Dell, H., 2006, Numerical prediction of FLC with the program CRACH.
 In: Hora, P. (ed): Numerical and experimental methods in prediction of forming limits in sheet forming and tube hydroforming processes, ETH Zürich, 43-49.
- 66 Gologanu, M. et al., 1997, Recent extension of Gurson's model for porous ductile metals, In: Suquet, P. (ed.): *Continuum Micromechanics*. Springer-Verlag, Berlin Heidelberg New York, 61-130.
- 67 Goodwin, G.M., (1968) Application of strain analysis to sheet metal forming problems in the press shop, *Society of Automotive Engineers* No. 680093, 380-387.
- 68 Gotoh, M., Chung, T., Iwata, N., 1995, Effect of out-of-plane stress on the forming limit strains of sheet metals, *JSME International Journal*, 38, 123–132.
- 69 Haddag, B., Abed-Meraim, F., Balan, T., 2008, Strain localization and damage prediction during sheet metal forming, In: P. (ed.): *Proc.* 11th ESAFORM Conference on Material Forming, Lyon.

- 70 Han, H.N., Kim, K.H., 2003, A ductile fracture criterion in sheet metal forming process, J. Materials Process. Techn., 142, 231-238.
- 71 Hecker SS, Ghosh AK, Gegel HL (eds.). (1978) *Formability: Analysis modeling and experimentation*, Met. Soc. of AIME., New York.
- Hill, R., 1948, A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc. London, A193, 281–297.
- 73 Hill, R., 1952, On discontinous plastic states, with special reference to localized necking in thin sheets, *J. Mech. Phys. Sol.*, 1, 19-30.
- Hill, R., 1979, Theoretical plasticity of textured aggregates, *Math. Proc. Cambridge Philos. Soc.*, 85, 179–191.
- 75 Hill, R., 1993, A user-friendly theory of orthotropic plasticity in sheet metals, *Int. J. Mech. Sci.*, 35, 19–25.
- 76 Hiroi T., Nishimura H., 1997, The influence of surface defects on the forming-limit diagram of sheet metal, J. Materials Process. Techn., 72, 102–109.
- 77 Hiwatashi, S., Van Bael, A., Van Houtte, P., Teodosiu, C., 1998, Prediction of the forming limit strains under strain-path changes: application of an anisotropic model based on texture and dislocation structure, *Int. J. Plasticity*, 14, 647-669.
- Hopperstad, O.S. et al., 2006, A preliminary numerical study on the influence of PLC on the formability of aluminium alloys, In: Juster, N., Rosochowski, A. (eds.): *Proc.* 9th ESAFORM Conference on Material Forming, Glasgow, AKAPIT, Krakow, 315-318.
- 79 Hora, P., Tong, L., 1994, Prediction methods for ductile sheet metal failure using FEsimulation, In: *Proc. of the IDDRG Congress. Lisbon*, 363-375.
- 80 Hora, P., Tong, L., Reissner, J., 1996, A prediction method for ductile sheet metal failure. In: Lee, J.K., Kinzel, G.L., Wagoner, R.H. (eds): *Proc. of the NUMISHEET* 1996 Conference, Dearborn, 252-256.
- 81 Hora, P., Krauer, J. (eds), 2006, Numerical and experimental methods in prediction of forming limits in sheet metal forming and tube hydroforming processes, *FLC-Zürich 06 Conference*, Zürich.
- Hora, P. et al., 2007, Numerical and experimental evaluation of thermal dependent FLC, In: Tisza, M. (ed.). *Proc. of the IDDRG 2007 Conference*, Gyor, 23-30.
- Hora, P., Tong,L., 2008, Theoretical prediction of the influence of curvature and thickness on the FLC by the enhanced modified maximum force criterion, In: Hora, P. (ed.): *Proc. of the NUMISHEET 2008 Conf.*, Interlaken, Switzerland, 205-210.

- 84 Horstemeyer, M.F., Chiesa, M.L., Bamman, D.J., 1994, Predicting FLDs with explicit and implicit FE codes, In: *Proc. SAE Conference*, Detroit, 481-495.
- 85 Hosford, W.F., 1979, On yield loci of anisotropic cubic metals. In: *Proceedings 7th North American Metalworking Conference.*, SME, Dearborn MI, 191-197.
- 86 Hu, J.G. et al., 1998, Influence of damage and texture evolution on limit strain in biaxially stretched aluminium alloy sheets, *Materials Science Eng.*, A251, 243-250.
- 87 Huang, H.M., Pan, J., Tang, S.C., 2000, Failure prediction in anisotropic sheet metals under forming operations with consideration of rotating principal stretch directions, *Int. J. Plasticity*, 16, 611-633.
- 88 Inal, K., Neale, K.W., Aboutajeddine, A., 2005, Forming limit comparisons for FCC and BCC sheets, *Int. J. Plasticity*, 21, 1255–1266.
- 89 Jackson, K., Allwood, J., 2009, The mechanics of incremental sheet forming, J. Materials Process. Technol., 209, 1158-1174.
- 90 Janssens, K., Lambert, F., Vanrostenberghe, S., Vermeulen, M., 2001, Statistical evaluation of the uncertainty of experimentally characterized forming limits of sheet steel, *J. Materials Process. Techn.*, 112, 174-184.
- 91 Jeswiet, J., Young, D., 2005, Forming limit diagrams for single-point incremental forming of aluminium sheet, *Proc. IMechE: J. Eng. Manufact.*, Part B 219, 1–6.
- 92 Jie, M., Cheng, C.H., Chan, L.C., Chow, C.L., 2009, Forming Limit Diagrams of strain-rate-dependent sheet metals, *Int. Journal of Mechanical Science*, 51, 269–275.
- 93 John Neil, C., Agnew, S.R., 2009, Crystal plasticity-based forming limit prediction for non-cubic metals: Applcation to Mg alloy AZ31B, *Int. J. Plasticity*, 25, 379-398.
- Jurco, P., Banabic, D., 2005, A user-frienddy programme for calculating Forming Limit Diagrams. In: Banabic, D. (ed): *Proc. 8th ESAFORM Conference on Material Forming*, Cluj-Napoca, The Publishing House of the Romanian Academy, Bucharest, 423-427.
- 95 Karafillis, A.P., Boyce, M.C., 1993, A general anisotropic yield criterion using bounds and a transformation weighting tensor, *J. Mech. Phys. Solids*, 41, 1859-1886.
- 96 Karthik, V. et al., 2002, Variability of sheet formability and formability testing, *J. Materials Process. Technol.*, 121, 350-362.
- 97 Keeler, S.P., 1961, *Plastic instability and fracture in sheet stretched over rigid punches*, PhD Thesis, Massachusetts Institute of Technology, Boston.
- 98 Keeler, S.P., Backofen, W.A., 1963, Plastic instability and fracture in sheets stretched over rigid punches, *Trans. ASM*, 56, 25-48.

- 99 Keeler, S.P., 1970, La formabilité est améliorée par pression hydrostatique, Machine Moderne, 43-45.
- 100 Kim, K.J. et al., 2003, Formability of AA5182/polypropilylene/AA5182 sandwich sheets, J. Materials Process. Technol., 139, 1-7.
- 101 Kim, D. et al., 2008, Formulation of Forming Limit Diagram for sandwich sheet with anisotropic strain-rate potential, In: Hora, P. (ed.): *Proc. of the NUMISHEET 2008 Conf.*, Interlaken, Switzerland, 337-342.
- 102 Kim, J., Kang, B.-S., Lee, J.K., 2009, Statistical evaluation of forming limit in hydroforming process using plastic instability combined with FORM, *Int. J. Adv. Manuf. Technol.*, 42, 53-59.
- 103 Knockaert, R. et al., 2000, Forming limits prediction using rate-independent polycrystalline plasticity, *Int. J. Plasticity*, 16, 179-198.
- Koistinen DP, Wang NM (eds) (1978) *Mechanics of sheet metal forming*, Plenum Press, New-York London.
- 105 Krauer J., Hora, P., Tong, L., 2008, Temperature dependent forming limit prediction for metastable stainless steels, In: Hora, P. (ed.): *Proc. of the NUMISHEET 2008 Conf.*, Interlaken, Switzerland, 235-240.
- 106 Kuroda M., Tvergaard V., 2000a, FLD for anisotropic metal sheets with different yield criteria, *Int. J. Solids Struct.*, 37, 5037-5059.
- 107 Kuroda M., Tvergaard V., 2000b, Effect of strain path change on limits to ductility of anisotropic metal sheets, *Int. J. Mech. Sciences*, 42, 867-887.
- Kuroda, M., 2005, Effects of texture on mechanical properties of aluminium alloys sheets and texture optimization strategy, In: Smith, L.M., Pourboghrat, F., Yoon, J.-W., Stoughton, T.B. (eds): *Proc. of the NUMISHEET 2005 Conf.*, 445-450.
- 109 Lademo, O.G., Berstad, T., Hopperstad, O.S., Pedersen, K.O., 2004, A numerical tool for formability analysis of aluminium alloys, *Steel Grips*, 2, 427-437.
- 110 Lademo, O.G. et al., 2005, Prediction of plastic instability in extruded aluminium alloys using shell analysis and a coupled model of elasto-plasticity and damage, J. Materials Process. Techn., 166, 247–255.
- 111 Lemaitre, J. (ed.), 2001, *Continuous damage*. In: Handbook of Materials Behavior Models, Academic Press, San Diego, CA, 411-793.
- 112 Marciniak, Z., 1965, Stability of plastic shells under tension with kinematic boundary condition, *Archiwum Mechaniki Stosorwanej*, 17, 577-592.

- 113 Marciniak, Z, Kuckzynski, K., 1967, Limit strains in the process of stretch-forming sheet metal, *Int. J. Mech. Sci.*, 9, 609-620.
- 114 Marciniak, Z., 1968, Analysis of necking preceding fracture of sheet metal under tension, *La Metallurgia Italiana*, 8, 701-709.
- 115 Matin, P.H., Smith, L.M., 2005, Practical limitations to the influence of throughthickness normal stress on sheet metal formability, *International Journal of Plasticity*, 21, 671-690.
- Mattiasson, K., Sigvant, M., Larsson, M., 2007, On the prediction of plastic instability in metal sheets, In: J.M.A. César de Sá, J.M.A., Santos, A.D.: *Proc. NUMIFORM'07 Conference*, 908, 129-135.
- 117 Mattiasson, K., Sigvant, M., Larsson, M., 2007, Theoretical and experimental sheet metal failure evaluation, In: Tisza, M. (ed.). *Proc. of the IDDRG 2007 Conference*, Gyor, 185-194.
- 118 Mattiasson, K., Sigvant, M., Larsson, M., 2008, On the role of strain rate in finite element simulations of sheet forming processes. In: Hora, P. (ed.): *Proc. of the NUMISHEET 2008 Conf. (Part B. Benchmark study)*, Interlaken, Switzerland, 223-228.
- 119 Mattiasson, K., Sigvant M., 2008, An evaluation of some recent yield criteria for industrial simulations of sheet forming processes,. *International Journal of Mechanical Sciences*, 50, 774-787.
- 120 McGinty, R., McDowell, D.L., 2004, Application of multiscale crystal plasticity models to FLD, *Trans.ASME., J. Eng. Mater. Techn.*, 126, 285-291.
- 121 Nakazima, K, Kikuma, T, Hasuka, K., 1971, Study on the formability of steel sheets, *Yawata Tech. Rep.*, No. 284, 678-680.
- 122 Nandedkar, V.M, Narashimhan, K., 1999, Prediction of forming limits incorporating work-hardening behavior, In: Gelin, J.C., Picart, P. (eds): *Proc. of the NUMISHEET* 1999 Conference, Besancon, 437-442.
- 123 Narashimhan, K., Wagoner, R.H., Finite Element Modeling simulation of in-plane FLD of sheets containing finite defects, *Metallurgical Trans.*, 22A, 2655-2665.
- Paraianu, L., Banabic, D., 2005, Calculation of Forming Limit Diagrams Using a Finite Element Model. In: Banabic, D. (ed.): *Proc.* 8th ESAFORM Conference on Material Forming, Cluj-Napoca, The Publishing House of the Romanian Academy, Bucharest, 419-423.

- Paraianu, L., Comsa, D.S., Gracio, J.J., Banabic, D., 2006, Influence of yield locus and strain-rate sensitivity on the Forming Limit Diagrams, In: Juster N.,
 Rosochowski A. (eds.): *Proc. 9th ESAFORM Conference on Material Forming*,
 Glasgow, The Publishing House AKAPIT, Krakow, 343-346.
- Parsa, M.H., Ettehad, M., NasherAl Ahkami, S., 2009, FLD determination of al 3105/polypropylene/Al 3105 sandwich sheet using numerical calculation and experimental investigations, In: van den Boogart, T., Akkerman, R.. (eds.): *Proc. of the 12th ESAFORM Conference on Material Forming*, Enshede.
- 127 Petek, A., Kuzman, K., 2007, The determination of the FLD for conventional and single point incremental sheet metal forming, In: Tisza, M. (ed.). *Proc. of the IDDRG 2007 Conference*, Gyor, 249-256.
- Rajarajan G. et al., 2005, Validation of the non-linear strain –path model CRACH to enhance the interpretation of FE simulations in multistage forming operations, In: Banabic, D. (ed.): *Proc. 8th ESAFORM Conference on Material Forming*. Cluj-Napoca, The Publishing House of the Romanian Academy, Bucharest, 387-390.
- 129 Ragab A.R., Saleh, C., 2000, Effect of void growth on the predicting forming limit strains for planar isotropic sheet metals, *Mechanics of Materials*, 32, 71-84.
- Ragab, A.R., Saleh, C., Zaafarani, N.N., 2002, Forming limit diagrams for kinematically hardened voided sheet metals, *J. Materials Process. Techn.*, 128, 302– 312.
- 131 Rechberger, F., Till, E.T., 2004, Influence of scatter of materials properties on the formability of parts, In: Kergen, R. (ed): Forming the future, Proc. IDDRG 2004 Conference, Sindelfingen, 236-245.
- 132 Savoie J. et al., 1998, Prediction of the FLD using crystal plasticity model, *Materials Science Eng.*, A257, 128-133.
- 133 Shakeri, M., Sadough, A., Dariani, B.M., 2000, Effect of pre-straining and grain size on the limit strains in sheet metal forming, *Proc.Instn. Mech. Engrs.*, 214B, 821-827.
- 134 Shim, M.S., Park, J.J., 2001, The formability of aluminium sheet in incremental forming, *J. Mater. Process. Technol.*, 113, 654–658.
- 135 Signorelli, J.W., Bertinetti, M.A., Turner, P.A., 2009, Predictions of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model, *International Journal of Plasticity*, 25, 1–25.

- 136 Signorelli, J.W., Bertinetti, M.A., 2009, On the role of constitutive model in the forming limit of FCC sheet metal with cube orientations, *International Journal of Mechanical Sciences*, 51, 473–480.
- 137 Smith, L.M. et al., 2003, Influence of transverse normal stress on sheet metal formability, *International Journal of Plasticity*, 19, 1567–1583.
- Soare, S, Yoon, J.W., Cazacu. O., 2007, On using homogeneous polynomials to design anisotropic yield functions with tension/compression symmetry/asymmetry.
 In: Cesar de Sa, J.M.A., Santos, A.D. (eds) *Materials Processing and Design: Modeling, Simulation and Applications. Proc. of the NUMIFORM 2007 Conf.*, Porto, 607-612.
- 139 Soare, S., Banabic, D.,2008, Application of a polynomial yield function to the predictions of limit strains, *Steel Research International*, 79, 39-46.
- 140 Soare. S., Banabic, D, 2009, A discussion upon the sensitivity of the MK model to input data, *Int. Journal Material Forming*, 2, 503-506.
- 141 Stören, S., Rice, J.R., 1975, Localized necking in thin sheets, *J. Mech. Phys. Solids*, 23, 421-441.
- Strano, M., Colosimo, B.M.: Logistic regression analysis for experimental determination of forming limit diagrams. Int. J. Machine Tools Manuf. 46 (2006) 673-682
- 143 Strano, M., Colosimo, B.M., 2006, Ordinal logistic regression analysis for statistical determination of forming limit diagrams, In: Juster N., Rosochowski A. (eds.): *Proc.* 9th ESAFORM Conference on Material Forming, Glasgow, The Publishing House AKAPIT, Krakow, 303-306.
- 144 Swift, H.W., 1952, Plastic instability under plane stress, *J.Mech. Phys.Sol.*, 1, 1-16.
- Tai, W.H., Lee, W.B., 1996, Finite element simulation of in plane forming processes of sheets containing plastic damage, In: Lee, J.K., Kinzel, G.L., Wagoner, R.H. (eds): *Proc. of the NUMISHEET 1996 Conference*, Dearborn, 257-261.
- 146 Teixeira, P. et al., 2006, Finite element prediction of fracture onset in sheet metal forming using a ductile damage model, In: *Proc. of the IDDRG 2006 Conference*, Porto, 239-245.
- 147 Teodosiu, C., Hu, H., Microstructure in the continuum modeling of plastic anisotropy, In: Shen, S., Dawson, P.R. (eds.): Proc. of the Conference, NUMIFORM'95 on Simulation of Materials Processing, Theory, Methods and Applications, Balkema, Rotterdam, 173.

- 148 Van der Boogaard, A.H., Huetink, J., 2003, Prediction of sheet necking with shell finite element models, In: .Brucato, V. (ed.): *Proc.* 6th ESAFORM Conference on Material Forming, Salerno, Nuova Ipsa Editore, Palermo, 191-194.
- 149 Van Houtte, P., Toth L.S., 1993, Generalization of the Marciniak-Kuczynski defect model for predicting FLD, In: Lee, W.B. (ed.): Advances in Engineering Plasticity and its Application, Elsevier, Amsterdam, 1013-1020.
- 150 Van Houtte, P., 1994, Application of plastic potentials to strain rate sensitive and insensitive anisotropic materials, *Int. J. Plasticity*, 10, 719-748.
- 151 Van Houtte, P., 2005, Anisotropy and formability in sheet metal drawing, , In:
 Banabic, D. (ed.): *Proc.* 8th ESAFORM Conference on Material Forming, Cluj-Napoca, The Publishing House of the Romanian Academy, Bucharest, 339-342.
- 152 Van Minh, H., Sowerby R., Duncan J.L., 1973, Variability of Forming Limit Curves, Int. J. Mech. Sci., 16, 31-44.
- 153 Vegter, H., An, Y., Pijlman, H.H., Huetink, J., 1999, Different approaches to describe the plastic material behaviour of steel and aluminium-alloys in sheet forming, In: Covas, J.A. (ed.): *Proc. of the 2nd ESAFORM Conference on Material Forming*, Guimaraes, 127–132.
- Vegter, H., van den Boogaard, A.H., 2006, A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states, *Int. J. Plasticity*, 22, 557–580.
- 155 Vegter, H., ten Horn, C.H.L.J., Abspoel, M., 2008, Modeling of the Forming Limit Curve by MK Analysis and FE simulations, In: Hora, P. (ed.): *Proc. of the NUMISHEET 2008 Conf. (Part B. Bechmark study)*, Interlaken, Switzerland, 187-192.
- Viatkina, E.M. et al., 2001, Forming Limit Diagrams for sheet deformation process:
 a crystal plasticity approach, In: Habraken, A.M. (ed.): *Proc. of the 4nd ESAFORM Conference on Material Forming*, Liege, 465-468.
- 157 Vos, M., Banabic, D., 2007, The Forming Limit Band a new tool for increasing the robustness in the simulation of sheet metal forming processes, *Proc. of the IDDRG* 2007 Conference, Gyor, 165-176.
- 158 Wagoner, R.H., Chan, K.S., Keeler, S.P. (eds), 1989, *Forming Limit Diagrams: Concepts, Methods, and Applications*, TMS, Warrendale.
- 159 Wu, P.D., Neale, K.W., Van der Giessen, E., 1997, On crystal plasticity FLD analysis, *Proc. R. Soc. London*, 453, 1831–1848.

- 160 Wu, P.D. et al., 1998, Crystal plasticity FLD analysis of rolled aluminium sheets, *Metallurgical Trans.*, 29A, 527-535.
- 161 Wu, P.D., MacEwen, S.R., Lloyd, D.J., Neale, K.W., 2004, A mesoscopic approach for predicting sheet metal formability, *Model. Simul. Mater. Sci. Eng.*, 12, 511–527.
- 162 Wu, P.D., Graf, A., MacEwen, S.R., Lloyd, D.J., Jain, M. Neale, K.W., 2005, On forming limit stress diagram analysis, *Int. J. Solids Struct.*, 42, 2225-2241.
- 163 Wu, P.D., Lloyd, D.J. Jain, M., Neale, K.W., Huang, Y., 2007, Effects of spatial grain orientation distribution and initial surface topography on sheet metal necking, *International Journal of Plasticity*, 23, 1084–1104.
- 164 Wu, P.D. et al., 2008, Effects of superimposed hydrostatic pressure on sheet metal formability, *International Journal of Plasticity*, 25, 1711-1725.
- 165 Xu, Y., 2006, Modern Formability: Measurement, Analysis and Applications, Hanser Gardner Publications.
- 166 Yao, H., Cao, J., 2002, Prediction of FLC using an anisotropic yield function with prestrain induced prestress, *Int. J. Plasticity*, 18, 1013-1038.
- Zhang, C. et al., 2008, Theoretical and numerical study of strain rate sensitivity on formability of sheet metal, In: Hora, P. (ed.): *Proc. of the NUMISHEET 2008 Conf.*, Interlaken, Switzerland, 229-233.
- 168 Zhou, Y., Neale K.W., 1995, Predictions of FLD using a rate sensitive crystal plasticity model, *Int. J. Mech. Sciences*, 37, 1-20.